281 research outputs found

    High luminosity interaction region design for collisions inside high field detector solenoid

    Full text link
    An innovatory interaction region has been recently conceived and realized on the Frascati DA{\Phi}NE lepton collider. The concept of tight focusing and small crossing angle adopted to achieve high luminosity in multibunch collisions has evolved towards enhanced beam focusing at the interaction point with large horizontal crossing angle, thanks to a new compensation mechanism for the beam-beam resonances. The novel configuration has been tested with a small detector without solenoidal field yielding a remarkable improvement in terms of peak as well as integrated luminosity. The high luminosity interaction region has now been modified to host a large detector with a strong solenoidal field which significantly perturbs the beam optics introducing new design challenges in terms of interaction region optics design, beam transverse coupling control and beam stay clear requirements. Interaction region design criteria as well as the luminosity results relevant to the structure test are presented and discussed.Comment: 12 pages, 9 figures, submitted to JINS

    Results from the DAΦNE high luminosity test

    Get PDF
    In the second half of 2007 the Frascati DAΦNE collider has been upgraded in order to test an innovative collision scheme based on large Piwinski angle and providing for Crab-Waist compensation of the beam-beam interaction. In the following the main upgrade motivations are explained and the achieved results are presented and discussed

    High luminosity interaction region design for collisions with detector solenoid

    Full text link
    An innovatory interaction region has been recently conceived and realized on the Frascati DA{\Phi}NE lepton collider. The concept of tight focusing and small crossing angle adopted until now to achieve high luminosity in multibunch collisions has evolved towards enhanced beam focusing at the interaction point with large horizontal crossing angle, thanks to a new compensation mechanism for the beam-beam resonances. The novel configuration has been tested with a small detector without solenoidal field yielding a remarkable improvement in terms of peak as well as integrated luminosity. The high luminosity interaction region has now been modified to host a large detector with a strong solenoidal field which significantly perturbs the beam optics introducing new design challenges in terms of interaction region optics design, beam transverse coupling control and beam stay clear requirementsComment: 3 pages, 4 figures, presented to the IPAC10 conferenc

    Synchrotron oscillation damping due to beam-beam collisions

    Get PDF
    In DA{\Phi}NE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of \approx 600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DA{\Phi}NE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DA{\Phi}NE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providing Landau damping of synchrotron oscillations.Comment: 3 pages, 5 figures, talk presented to IPAC'10 - Kyoto - May 24-28 201

    Aplication of Frequency Map Analysis to Beam-Beam Effects Study in Crab Waist Collision Scheme

    Full text link
    We applied Frequency Map Analysis (FMA) - a method that is widely used to explore dynamics of Hamiltonian systems - to beam-beam effects study. The method turned out to be rather informative and illustrative in the case of a novel Crab Waist collision approach, when "crab" focusing of colliding beams results in significant suppression of betatron coupling resonances. Application of FMA provides visible information about all working resonances, their widths and locations in the planes of betatron tunes and betatron amplitudes, so the process of resonances suppression due to the beams crabbing is clearly seen.Comment: 11 pages, 10 figure
    • …
    corecore